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ABSTRACT

Via the tensor product structure of the
nonlinear space we are able to solve the gen— For each p 1,2,... , let H~~~(X) =

eral C3tl.’1O~~ Z.CR problem of nonline~.r f:~rc- 
11(X) 8.. .8 11(X) and respectively

tionals of Gaussian processes in the sense
that we can reduce the nonlinear problem to a = H~ (X) ~~. .. ~ H CX ) be th 

th
e p power

standard linear estimation problem , the theory tensor and s~’mmetric tensor products of 11(X);

of which has been well developed. Also we in- for p = 0, let H~~ (X) H~~~(X) be the space of
troduce the concept of super prediotor for a
class of prediction problems and derive a all constant random variables in H(X). H~~~(X)

lower bound for the mean square error of the is a Hilbert space and its inner produce is

nonlinear prediction, such that

1. BACKGROUND (4) < . .
~~~~~~~

, fl~~ •. .7) >

Let X (X , t c T) be a zero mean H~~
’(X)

Gaussian proceJ defined on a probability ~
< 

~l’~ i
>
~i(x) 

‘‘ < 

~p
’ 7)p>H ( X )

space (O, B,P) . B is usual ly taken to be B (X),
the o—field generated by the process X. for all ~‘s and n ’s in 11(X). H~~~(X) is a

There are two important Hu bert spaces asso— closed subspace of H~~~(X ) spanned by all
ciated with the (Gaussian) process X. The elements of the form
nonlinear space of X , L

2
(X) = L

2
(ct,B(X),P ) ,

consists of all B~X)—measurable random van - ~~ ~i~
’ ‘‘

~~~ ~p 
= 

~4 Z ~~
‘ 

~~
abl es with f in ite second moment which are
called (nonlinear) L

2
—functional of X. The where it = 

~‘~i”~
’’ 1r~ ) runs through all perrnu—

linear space of X ,H (X ) ,  is the closed sub— tations of (l ,”’.P) and ~ ‘s are elements of

space of L
2

(X) Spanned by X~ , t C T, and its 11(X). For further properties of tensor and
symmetric tensor product spaces see for cx—

elements are called linear L
2
—functionals of ample (61 and 17] .

X.- If S is a subset of T, then the nonlinear Our analyses are based on the fo l lowing

space and linear space of the Gaussian pro— tensor product structure of the nonlinear

cess (X
t, 

t c S) are denoted by L
2
(X;S) and space of a Gaussian process (see (61 and [7]).

f M(X;S) respectively. Note that L
2
(X ;S) is a THEOREM 1. Let K be a zero mean Gaussian

— 
proce ss. Then there exists a unique iaomorp~’.-closed subspace of L

2
(X) and H(X;S) a closed - A.~~ • ~~~~~ ~~~0

H8P (x) ~~~~ L2 
(X) ~~I~cJt ~ha1.~subspace of 11(X).

Suppose ~ 01(X) and E ~2= ~~ Then ( is a
Gaussian variable with mean zero and variance (6) 0 (e~~ ) e ~~~

t. Applying the Gram-Schmidt procedure to
orthogonalize the sequence of random variables where eE 

— I (P!)~~ ~ £ 11(X).

~~~~~~~~~~~~~ in L
2

(X) , we obtain the ortho-

gonal sequence H
0,t~~

)
~ 

H
l.t~~~ 

H
2 t

(
~
) IF F;l...:. c1~ 

£ 11(X) ~~‘e orthogonal then

is called the Hermits polynomial of (‘i) 1
8
~te ...ø 

~~~~~~~~~~~~~~ 
2(
~~l
)

P,E ~idegree p with parameter t, and is a poly-
nomial in both variables t and ~~. The f i rst ‘‘ 

~~~~~~ ~~~
few Hermite polynomials are where p — p +...+p~ . IF (~~ , y £ r } ( r  l inearly

B (~) 1 H
o,t l,~ ~ 

H
2 t
(
~
) ~

2—t ordered) is a complete orthonormal set (CONS)
in 14(X) then the ft~nily

= — 3t~
The Herm ite polynomials staisfy the following 

(8) ( Pt

properties 

,j ~~~~~
k

C
&ppro~~~4 for ~ - .0

4

4 -~~
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— (p t)”½ H (C 1) •.. (p I) ½ H (C
k)~ 

• H~~~(X) by virtue of Theorem 1, w~ have
Y 

~
‘k Tk

p > 0, k > 1, p
~~
+. ‘

~~ 
‘1’k 

p,y <...< Tk , e E (O~~X~~. t C S) = PrOj
L (X 5) 

e
is a CONS iN L

2
(~ ).

2. NONLINEAR ESTIMATION I I a . .  
~~ 

Proi~~~~~~)

Let X (X
t
, t £ T) be a second order 

(~8P1 ~~~~~~~~~ ~

process with zero mea::. Consider the fol— ~
‘l

lowing estimation problem : We observe X -t Thus to show the theorem it ~-.iffices to show
for t r S, a subset of T, and we want to 

-
estimate an L

2
—functional 8 of X based on (10) Proj

L (X’S) ~~ C,~~ 
=

the observations. We are interested in find— - 
2 

- 
1 k

ing the best estimate O , an L
2
-functional e. . .~~

of (Xe
. t £ S) which minimizes the msan V1

square error of estimation E (0—a) 2. It is 
For each p c L

2
(X,S) write

well known that B can be obtained as the Con-
ditional expectation of B given X~ , t £ S; - I ~~~~

namely a~,O q
1

+. . ‘~
q
j
=q 6

k
..

B — ((8 I X~ , t £ 5). 6 ...<6.
-In general, 6 is extremely difficult to - 

1 ) 
-

determine. However , if X is a Gaussian eq1 
~ ~ 

•q
i

process we have a complete solution. 6
i 

‘‘‘ 6.
Let X be a zero mean Gaussian process 3

and , ~~ 
£ ~) ~r linearly ordered) a where {n a,6 £ A} (~ linearly ordered) is

CONS i~ 11(X). Then, according to Theorem 1, a CONS in H(X;S). We have
every L2

—functional of X has the following 
- -< C  e...e ~orthogonal development 

p p 
y
1

- - (9) 0 I a 
1’.’ k 

q
1
.. .q. 

- -.

~~~~ ~~~~ 
‘ “

~ k~~ ~I’~ ~T)~ ~ b6 ‘6- <

Y1
<. ‘ ‘<Tk 

1 ) 1

- 
1i
~ 

(Cr1)... n ~~iV1 H
PTk~~

Yk
) 6i ‘ 

q1
...q . 

~~l 
-

- — b ~ < C 6 •...8 C
THEOREM 2. Let X be a zero mean Gaussian - 6~. . .6 1

pr oces Pc~h~ let 8 £ L (X) have the ortho -. 
- -

gona l deve lopment ~~ 3. Then eq1 - - 
eq.

n
a ~i 

- -
p>0 

~1
÷
~ 
“ ‘
~~k~~ ~1 ~~ 

T~ 
— < 

~ - - -
- 

~~ ~~ Cy
k

~~ 
where the second equality is a consequence

Ti 
of properties (1), ~~) and <

~~~~~
‘ ‘
~6
>

E ~2 (~~ ) 
<
~‘v ‘
Since p £ L

2
(X;S) is arbitraty and

where ~~1 £ L (X;S), ~10) follows.
t £ S) = Pro i H ( X S) C~ - 

• • T~ 
2

PROOF: Upon identify ing L
2
(X) with This completes the proof.
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çQ~QI~~~RY 3. If’ x is a sp ro mean Gaussian and an easy computation snow ; that

p ro ceus an.1 ~ £ I U X ) ,  thor. 
a 

R(u-t)—k(v-t)R(u-v) ~~R (v-t)-R (u-t~~~~ -~~
( 11) (H~ EC 2 (C) X • t C 5) = }I

~~.E~~
2 C )

~ l— R 2 (u—v)  l—R 2 (u— v)
( 12 ) E (oxp(C— ~~C~ } I x~~, t 1 5)

Since 0 is an L2— fu n ct ion a l  of X~~, i t  ha s
exp (~ —½ (~ 2 }~ the orthogonal development 0

If x is a zero mean Gaussian r tIl ’tinqale then
2 1 a H

t p ,Ex~~ 
(X t

) and = exp (x
~
_½ Ex ~ } are ~ >0 p ~~. ~~~~~~ 

Thu s by Theo r em 2 t &

Y = 4 1

martingal es. beat estimate of 0 is given by
(The last statement is well known for X a

Weiner process and p = 2 . )  a I a F!
PROOF. (11) and (12) follows from proper- p>O P p,Ex~ ~~t

>

tieS (2 1, (3 ) and Theorem 2. The last
assertion is an immediate consequence of (11) a H
and (12). ‘ p,a

2+62+2ciB}~~u—’~) 
(SX

u 
+

If X is a zero mean Gaussian process and
T = (- , ) (Or any interval) then by the
corollary we have that for all s < t 3. NONLINEAR PREDICTION

(13) E (H
p. x 2(xt

) I ,c 
~~ < — Consider the following prediction pro-

— blem for a class of processes: Let X =

(X
e
, t £ 19, ‘1’ an interval , be a second order

H
f 

(~ )
X 2 t,s process and let = 0

~~
(X
~

) wi th a realt , S
function such that 0 and EY

~
2< .. for all

a~here -
x — E ( x  ~ , ~ < ~ >. t £ T. Suppose on the basis of the (past)
t,s t u — values of V = (Y 5, s < t) up to time t we

An expression for Ic can always be obtained want to find the best prediction of the future
( S

via the Cramer — Hi~~ representation of X: value of V for fixed it > 0.
N 

~ 
t+t

Two predictors are of special in t e res t :

~ J f~~ (t,u) d z~~~ the optimal linear predictor 
~t

(t . t)  and
n=l -=

Then we have the optimal nonlinear predictor ~~ f (t . T ) .  Th e
N S (n) Cm ) optimality is in the sense of min imizing t~~~ f f (t ,u) d zu mean square error w i t h i n  the class of all li~iea t

n 1  
~nd nonlinear  predictors respectively. It
well known that

The case with p = 2 , i.e. the L2
—functionai  

= 
; $ < t)

— x~
2, is considered in (2 1 for a very S —

Y £t,r )  E(Y
~+ I Y~ ’ S < t)

special class of Gaussian processes X. It
should be clear that whenever a sirole expres-
sion is available for X , then (13) gives The correspond ing mean square prediction errors

t,s are denoted by
a simple expression for the nonlinear predictor
of the L

2
—functional H

PEX 2 (X
t

) .  01
2 (t ,-r) = E 

~~~ •
— Y

.e
(t.t))

2
,

We close this section by solving a sim—
2 2pie estimation problem . Let (X t . 0<t<T)  be (t.r)  = ECY~÷1— Y~~~(t,T))

a stationary reciprocal Gaussian process with
EX ~=O ,Ex~

2=i and continuous covariance func- Now introduce a super pred ictor ~ (t .r )
S

tion R ( t , s) = R ( t - s ) .  It is known S I that to be ths nonlinear prediction of V based
t+t

R(t) Bust take one of the following forms: on X , s < t , i.e.
—at 

—

e , a > 0 ; cos at, a > O a n d T< it/a;
V (t , T ) (V I X S < t ) ;

1 — at , O < a < 2 / T . L e t O < u < t < v < T  $ t+t S —

be given. We desire to estimate 8, an L
2~ 

its mean square prediction error is denoted by

functional of X~ , based on 0
5
2 (t ,T). It is clear that

X , C £ S (0,uJ tJ (v ,T]. By reciprocality (14)a o2j t~t )  < c ~ (t ,r )

we have

— ~ cx~ I x9,s £ S) — aX
0

+ BX~;

3

I
4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rJ c,- - -- - -.- -;. “ -..u*~ ~~~~ ., 4 -
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and thus ~
2 provides a lower bound for the mean It is well known from the general th eory of
S stationary proceu~ that o~~(r) can be ob ta ine j

square errors of linear and nonlinear I redic-
tors. If X is a Gaussian ~~~~~~~~ o

2(t,it) can analytically (if not explicitly) through t:e
5 Wiener -P aley factor iza t ion  theorem if  X is r . -çu-

be obtai ned by solving an es t ima t ion  problem as Jar  ( i . e .  H ( x  s < t )  = ( 0 ) ) .  It can be
discussed in SectiOn 2. If, in addition , ~‘ —

happens to be a 1-1 funct ion for  euch t then shown tha t i f  X is regular  so is y , end th-re-
the a—fields generated by X~ and V t 

coincide, 
fore o~~tr) can also be obtained analytically.

In this case Y ( t,r) ~ (t , t)  and the rico-
n~ s Jaglom (41 has considered the problem of

linear predictor can be obtained by solving an comparing the performance of optima l linear and
estimation problem again, nonlinear predictors for polynomial functions of

We now turn to the important specia l case certain stationary Markov processes. Donelson
where X — (X

t.
—.. < t < ) is a zero mean sta— and Maltz (1) studied this problem in detail for

polynomial functions of the Ornstein—Uhlen~seck
tionary Gaussian process wi th covaria nce f unc- process. The inequality (14) plays a central
tion R ( t,s) R (t-s) and = 0 for all t. In role in such studies.
this case we can calculate a2 (t , it )  = ~2(~~) as As an example consider X the Ornstein-Uhlen-

S S beck process arid V a nonlinear function of X
follows. Write

given by (j5) Recall that the Ornstein-Uhlen—

( l ~ V
t 

e(X
t

) — a H 2 (x~
) beck process is a Gaussian process with zero

p>l P p a mean and covariance R(t—s) = ~~~~~~ By the

where ~2 — Ext. Clearly V is a stationary pro— 
Markov property we have 

—
p t a  a < . X (t,r) = E ( X  X , S < t) = e 

t)~ces
~~
with EV

~~~
.0 and EY

~~~~I 
2 2p -

p t+t S — t
Since for C, l1 £ 11(X) Thus it follows from (]7) and (18) that

E H 
~~~~~ ~~~~p,EC p, E n y ( t , t )  I a H (e

T
X
t
)

- ~~1 
P

— p!<C,n’~, —pitI a e  H ( X
t

) ,
and if p ’ q - p>l p P

- E H 2
( C ) H  

~~~~ 
0, o2 (t )  I 2 

— 
—2ptp t a  (1 e ) .

p,Et q.En p>i
it follows

Zp1a
~1~

’ t ) 
This result, with V a polynomial function of X ,

QE.) E~~~ Y = -
t s has been obtained by ~~nelson and Maltz usirq

a different approach.
And Q6) implies that if X is mean square con- Final ly,  we remark that if  V — II (X ) then
tinuous so is V. t p t

Let X(t,r)  = E (X  I X S < t)
t+t s — V (t,r) V (t ,-r) = e PT~

$ t
be the optimal nonlinear predictor of X 2 2 2pt

t+t - a ( i t )  — a ( i t )  — 1 — e
$(which is also the optimal l inear predictor

since X is Gaussian), and o~ (r) be the mean
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